Shortening the Libert-Peters-Yung Revocable Group Signature Scheme by Using the Random Oracle Methodology
نویسندگان
چکیده
In EUROCRYPT 2012, Libert, Peters and Yung (LPY) proposed the first scalable revocable group signature (R-GS) scheme in the standard model which achieves constant signing/verification costs and other costs regarding signers are at most logarithmic in N , where N is the maximum number of group members. However, although the LPY R-GS scheme is asymptotically quite efficient, this scheme is not sufficiently efficient in practice. For example, the signature size of the LPY scheme is roughly 10 times larger than that of the RSA signature (in 160-bit security). In this paper, we propose a compact R-GS scheme secure in the random oracle model that is efficient not only in the asymptotic sense but also in practical parameter settings. We achieve the same efficiency as the LPY scheme in an asymptotic sense, and the signature size is nearly equal to that of the RSA signature (in 160-bit security). It is particularly worth noting that our R-GS scheme has the smallest signature size compared to those of previous R-GS schemes which enable constant signing/verification costs. Our technique, which we call parallel Boneh–Boyen–Shacham group signature technique, helps to construct a R-GS scheme without following the technique used in LPY, i.e., we directly apply the Naor–Naor–Lotspiech framework without using any identity-based encryption. keywords: group signature, revocation, scalability.
منابع مشابه
Scalable Group Signatures with Revocation
Group signatures are a central cryptographic primitive, simultaneously supporting accountability and anonymity. They allow users to anonymously sign messages on behalf of a group they are members of. The recent years saw the appearance of several constructions with security proofs in the standard model (i.e., without appealing to the random oracle heuristic). For a digital signature scheme to b...
متن کاملEfficient Traceable Signatures in the Standard Model
Traceable signatures (TS), suggested by Kiayias, Tsiounis and Yung (Eurocrypt’04), extend group signatures to address various basic traceability issues beyond merely identifying the anonymous signer of a rogue signature. Namely, they enable the efficient tracing of all signatures produced by a misbehaving party without opening the identity of other parties. They also allow users to provably cla...
متن کاملShort Group Signatures via Structure-Preserving Signatures: Standard Model Security from Simple Assumptions
Group signatures are a central cryptographic primitive which allows users to sign messages while hiding their identity within a crowd of group members. In the standard model (without the random oracle idealization), the most efficient constructions rely on the Groth-Sahai proof systems (Eurocrypt’08). The structure-preserving signatures of Abe et al. (Asiacrypt’12) make it possible to design gr...
متن کاملGroup Signatures with Almost-for-Free Revocation
Group signatures are a central cryptographic primitive where users can anonymously and accountably sign messages in the name of a group they belong to. Several efficient constructions with security proofs in the standard model (i.e., without the random oracle idealization) appeared in the recent years. However, like standard PKIs, group signatures need an efficient revocation system to be pract...
متن کاملGroup Encryption: Non-interactive Realization in the Standard Model
Group encryption (GE) schemes, introduced at Asiacrypt’07, are an encryption analogue of group signatures with a number of interesting applications. They allow a sender to encrypt a message (in the CCA2 security sense) for some member of a PKI group concealing that member’s identity (in a CCA2 security sense, as well); the sender is able to convince a verifier that, among other things, the ciph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016